NASA-University Engineering Research Summit

Bioastronautics

Critical Technology Trends and Needs

Helen W. Lane, Ph.D. Space and Life Sciences Directorate NASA Johnson Space Center

Bioastronautics Elements

All elements of Bioastronautics rely upon development and integration of enabling technologies.

Challenges: Orbital Space Flight

Astronauts experience a spectrum of adaptations in flight and postflight

Neurosensory Neuromotor

Cardiovascular Pulmonary

Endocrine

Balance disorders
Cardiovascular deconditioning
Decreased immune function
Muscle atrophy
Bone loss

Musculoskeletal

Challenges: Exploration-Class Missions

- Understand stages of adaptation and establish countermeasures
- Stabilize and treat crew members as needed
- Predict and minimize exposure to radiation
- Maintain crew performance
- Provide regenerable/recyclable life support

Technologies of the Future

Today

Mechanical
Operator-dependent

November 2000 NASA-University Summit

Technological Revolution

Tomorrow

Adaptive Autonomous Biologically inspired Human-centered

Technologies of the Future

The next generation of technologies will draw from evolving knowledge in nanotechnologies, biotechnology, and informatics.

Informatics

Nanotechnology Research and Design on the Molecular Level

Life support

- Sensors and effectors
- Bioregeneration
- "Humans-on-a-chip"
- Biological niches

Medical care

- Diagnostic probes
- Treatment and delivery systems
- "Keyhole" surgery
- Tissue replacement

Informatics Analyzing and Manipulating Data

- Biocomputation
 - Imaging
 - Training and simulation
- Telemedicine

Biotechnology Drawing Inspiration from Biology

- Haptic "smart" systems capable of simple motions
- Self-repairing or -diagnosing systems based on genetic models
- Tissue engineering

- Imaging
 - X-ray
 - MRI
 - Ultrasound
- Sensors, effectors, and transmitters
 - Instruments
 - Analyzers

Critical Area Adaptation and Countermeasures

- Ingestible, implantable sensors
- Small, portable diagnostic equipment
- Molecular and genomic characterization of adaptation
- Pharmaceuticals and dietary supplements
- Exploration of artificial gravity as countermeasure
- Immersive VR/ systems for sensory-motor training and evaluation

Critical Area Radiation

- Active, solid state, personal radiation dosimeter
- Biological dosimeter
- Early warning system for solar particle events
- İmproved models for the radiation environment, shielding, and transport
- Chemical or biological modifiers and radioprotectants

Critical Area Crew Performance

- Non-intrusive monitoring of individual/ group performance
- Adaptive user interfaces and displays
- Onboard systems for refresher training and skill monitoring
- Continuous assessment of mental status
- Personal communications and recreation through integrated system

Critical Area Advanced Life Support

- Highly reliable, autonomous life support systems to provide:
 - breathable atmosphere,
 - potable water,
 - crop production and processing,
 - solid waste processing, and
 - thermal control

- Automatic detection and remediation of environmental
 - Microbial and chemical contamination in air, water, and food
 - Radiation events or cumulative exposure

Future Endeavors

Our capacity to explore beyond Earth's orbit demands the confluence of nanotechnology, biological inspiration, and informatics. 15

November 2000 NASA-University Summit